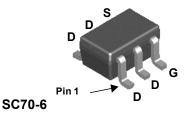
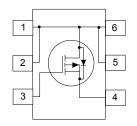
FDG330P

Features

• -2 A, -12 V. R_D

 $R_{DS(ON)}$ = 110 m Ω @ V_{GS} = -4.5 V


 $R_{DS(ON)}$ = 150 m Ω @ V_{GS} = -2.5 V


 $R_{DS(ON)}$ = 215 m Ω @ V_{GS} = -1.8 V

Applications

- · Battery management
- Load switch

- · Low gate charge
- High performance trench technology for extremely low $R_{\mbox{\scriptsize DS(ON)}}$
- Compact industry standard SC70-6 surface mount package

Absolute Maximum Ratings T_A=25°C unless otherwise noted

Symbol	Parameter		Ratings	Units	
V _{DSS}	Drain-Source Voltage		–12	V	
V_{GSS}	Gate-Source Voltage		± 8	V	
I _D	Drain Current - Continuous	(Note 1a)	-2	А	
	- Pulsed		-6		
P _D	Power Dissipation for Single Operation	(Note 1a)	0.75	W	
		(Note 1b)	0.48		
T_J , T_{STG}	Operating and Storage Junction Temperature Range		-55 to +150	°C	

Thermal Characteristics

R _{0,JA} Thermal Resistance, Junction-to-Ambient Note 1b) 260	°C/W
--	------

Package Marking and Ordering Information

Device Marking	Device	Reel Size	Tape width	Quantity
.30	FDG330P	7"	8mm	3000 units

FDG330P

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Char	racteristics					
BV _{DSS}	Drain–Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, \qquad I_{D} = -250 \mu\text{A}$	-12			V
ΔBV _{DSS} ΔT _J	Breakdown Voltage Temperature Coefficient	I _D = –250 μA, Referenced to 25°C		-2.7		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = -10 V, V _{GS} = 0 V			-1	μА
I _{GSSF}	Gate-Body Leakage, Forward	$V_{GS} = 8 \text{ V}, \qquad V_{DS} = 0 \text{ V}$			100	nA
I _{GSSR}	Gate-Body Leakage, Reverse	$V_{GS} = -8 \text{ V}, V_{DS} = 0 \text{ V}$			-100	nA
On Char	acteristics (Note 2)	•		•	•	
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = -250 \mu\text{A}$	-0.4	-0.7	-1.5	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate Threshold Voltage Temperature Coefficient	I_D = -250 μ A, Referenced to 25°C		2.3		mV/°C
$R_{DS(on)}$	Static Drain–Source On–Resistance	$V_{GS} = -4.5 \text{ V}, I_D = -2.0 \text{ A}$ $V_{GS} = -2.5 \text{ V}, I_D = -1.7 \text{ A}$ $V_{GS} = -1.8 \text{ V}, I_D = -1.4 \text{ A}$ $V_{GS} = -4.5 \text{ V}, I_D = -2.0 \text{ A}, T_J = 125 ^{\circ}\text{C}$		84 107 145 98	110 150 215 148	mΩ
I _{D(on)}	On–State Drain Current	$V_{GS} = -4.5 \text{ V}, I_D = -2.0 \text{ A}, T_J = 125^{\circ}\text{C}$ $V_{GS} = -4.5 \text{ V}, V_{DS} = -5 \text{ V}$	-6			Α
g _{FS}	Forward Transconductance	$V_{DS} = -5 \text{ V}, I_{D} = -2.0 \text{ A}$		6.8		S
Dynamic	Characteristics	·				
C _{iss}	Input Capacitance	$V_{DS} = -6.0 \text{ V}, V_{GS} = 0 \text{ V},$		477		pF
Coss	Output Capacitance	f = 1.0 MHz		186		pF
C _{rss}	Reverse Transfer Capacitance	7		124		pF
Switchin	ng Characteristics (Note 2)					
t _{d(on)}	Turn-On Delay Time	$V_{DD} = -6.0 \text{ V}, I_{D} = 1 \text{ A},$		10	20	ns
tr	Turn-On Rise Time	$V_{GS} = -4.5 \text{ V}, R_{GEN} = 6 \Omega$		11	20	ns
t _{d(off)}	Turn-Off Delay Time	7		12	22	ns
t _f	Turn-Off Fall Time	7		18	32	ns
Qg	Total Gate Charge	$V_{DS} = -6.0 \text{ V}, I_{D} = -2.0 \text{ A},$		5	7	nC
Q _{gs}	Gate–Source Charge	$V_{GS} = -4.5 \text{ V}$		0.8		nC
Q _{gd}	Gate-Drain Charge	7		1.4		nC
Drain-Se	ource Diode Characteristics	and Maximum Ratings		•	•	
l _s	Maximum Continuous Drain-Source	_			-0.62	Α
V _{SD}	Drain–Source Diode Forward Voltage	$V_{GS} = 0 \text{ V}, I_S = -0.62 \text{ A (Note 2)}$		-0.7	-1.2	V
	•	•			•	

Notes

- a.) 170°C/W when mounted on a 1 in² pad of 2 oz. copper.
- b.) 260°C/W when mounted on a minimum pad.
- **2.** Pulse Test: Pulse Width < $300\mu s$, Duty Cycle < 2.0%

^{1.} $R_{\theta JA}$ is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. $R_{\theta JC}$ is guaranteed by design while $R_{\theta CA}$ is determined by the user's board design.